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ON SHELL SOLUTIONS FOR MASONRY DOMES

JACQUES HEYMAN*

Department of Engineering, University of Cambridge

Abstract—Membrane solutions are sensitive to small deformations of the surface of a shell, and, as such, are not
suitable for the analysis of the type of dome considered here. Earlier studies [3, 4] on the application of plastic
theory to masonry construction are extended to the analysis of shells; some brief comments are made on the
structure of St. Sophia.

INTRODUCTION

A sHELL is usually considered to be ““thin” when the thickness (t) is less than about 5 per cent
of the local (and, of course, varying) radius of curvature (R); certainly a shell having
t/R = 001 will be thin, and it is thought that a membrane analysis will give accurate
estimates of the shell stress resultants, except in the neighborhood of boundaries, or for
certain (unfortunate) shapes of shell. In a membrane analysis it is assumed that all stress
resultants act in the middle surface of the shell, and that bending does not occur; thus, for
example, the general forces acting on an element of a shell of revolution will be as shown in
Fig. 1.

F1G. 1. Shell element (after Fliigge).

For such a shell, three equations for the three stress resultants may be written by
resolving in the 6 and ¢ directions and radially; these equations will involve the load
components p,, p, and p, (the presentation here follows Fliigge [1]). Thus this particular
problem is statically determinate, since the stress resultants can be determined (to within
arbitrary functions of integration to be found from the boundary conditions) without
reference either to compatibility conditions or to material properties; the three equations
of equilibrium suffice to determine the three stress resultants.

* Visiting Lecturer, Department of Architecture, Graduate School of Design, Harvard University.
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As an example, a shell of revolution subject only to its own weight will have a stress

system independent of 8; in Fig. 1, p, = 0 and Ny, = N, = 0. The two remaining equa-
tions of equilibrium become :

d
E(;(VN(p)—’lNoCOS @+pyrry =0

and (1
Ny No_
Feoo 1
where
r=r,sin@
p, = psing (2)
p, = —pcos@

and r, and r, are the two radii of curvature as defined in Fig. 1; p is the weight per unit
area of the shell.

The solution for r; = r, = R (spherical dome) is particularly simple, and leads to
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the value of N, being determinable from the second of equations (1), N,+ N, = Rp, =
— PR cos ¢. (The expression for N, could have been found directly from consideration of the
equilibrium of a cap of the dome, Fig. 2.)
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F1G6. 2. Cap of dome. F1G. 3. Ellipsoidal cross-section.

If now the cross-section of the dome is not circular, but elliptical, as shown in Fig. 3,
so that the shell is an ellipsoid of revolution, Fliigge gives the following expression for the
stress resultant N, (corresponding to equation (3) for the sphere):

N o= pb? (a? sin¢ + b? cos®¢p)? [i cos @ 1 . (a+c)a~ccos (p)}
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where ¢? = a?—b2.
To compare the spherical and ellipsoidal solutions, the stress at the crown of the dome
(¢ = 0) is given from equation (3) as
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and from equation (4) as

pa?

Nom =%

(6)

Thus the crown stress in the ellipsoidal shell is augmented, compared with the sphere, by a
factor involving a/b, the ratio of the major to minor axes of the ellipse. (It should be noted
that these solutions are independent of the precise extent of the shells; as mentioned, the
boundaries will introduce local perturbations in the expressions).

Numerically, suppose a spherical domical cap is used over an area of diameter 100 ft,
the radius of the shell being also 100 ft, so that the rise is 13-4 ft, Fig. 4. By modern standards
this is not a particularly shallow shell, as is confirmed by the relatively low value of ambient
stress. Taking a unit weight of material as 144 Ib/ft> (a number which cancels conveniently
with the number of sq. in. in a sq. ft), equation (5) for the sphere, using R = 100 ft, gives a
crown stress of 50 1b/in?. (This value may be compared with a usual compressive working
stress for concrete of say 1250 Ib/in?, or with the crushing strength of a medium sandstone
of say 6000 Ib/in?).

L‘\— 100ft.

FiG. 4. Spherical dome.

Now suppose that, on striking the shuttering for the shell, small deformations occur as
the shell takes up load (or, alternatively, suppose such small deformations to be due to
slightly imperfect placing of the original centering), so that the crown sags by 4 in. and the
whole dome takes on the form of part of an ellipsoid of revolution (note that 4 in. is § per cent
of the radius 100 ft). For the dimensions given, this tiny imperfection leads to an ellipsoid
having a ratio major to minor axis a/b of 2, with a = 60 ft, and the ambient stresses at the
crown, equation (6), are increased to 60 1b/in2.

Put another way, an ellipse, of major to minor axis ratio 2, and a circle can be drawn
to coincide to within +4 in. over a span of 100 ft and a rise of 13-4 ft. To construct formwork
to this accuracy is a formidable task, and the engineer using membrane theory must, if he is
aware of the geometrical closeness of an ellipse and a circle, be in some considerable doubt
as to the means of his calculations.

When structural calculations appear to be as sensitive to small imperfections as they
do in this example, one of two conclusions may usually be drawn. Either the structure
itself is of a dangerous type, liable to develop stresses of a magnitude not foresecen by the
designer, or the calculations made by the designer are the wrong ones for that particular
structure. Now a shell structure of reasonable dimensions (i.e. not too shallow nor too
thin) is not particularly dangerous; on the contrary, the survival of the dome of St. Sophia
from the sixth century, and of numerous thin Gothic vaults from the twelfth century on-
wards, most of them so “‘badly” built as to depart grossly from any recognizable mathe-
matical surface, and subject in addition to accidental deformations due to uneven settle-
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ments, indicates that the masonry shell is a particularly stable form of structure. The con-
clusion must be in this case that conventional membrane calculations have little relevance
to the estimation of the behavior of the shell.

This conclusion is reinforced by the numerical calculation made above. In general, the
stresses in a smoothly curving thin shell subjected only to its own weight are of the order
Rp, where R is the local radius of curvature and p the density of the material (the stress is of
course, independent of the (constant) thickness of the shell). The type of shell discussed in
this paper has R measured in tens of feet; taking p again as 144 Ib/ft3, the stresses will
therefore be measured in tens of Ib/in®. No problem arises, therefore, of crushing of the
material ; since strength is not here a prime design criterion, the detailed numerical calcula-
tion of values of stresses throughout the shell is a meaningless operation.

Equally, local instability is no problem. Ahm and Perry [2], quoting other authors,
conclude that a reasonable value of local buckling stress g, for a dome is given by

t
= 02E—
O = 026 ™

where E is Young’s Modulus. Taking E as 3 x 10° Ib/in?, and ¢, as the ambient stress of
say 60 Ib/in2, t/R is determined from equation (7) as 10~ % Such thin shells are outside the
structural range. (The stresses at Smithfield were of the order 600 rather than 60 1b/in?,
and buckling was significant. It may be noted that a hen’s egg has t/R ~ 1072)

Again, deflexions are not likely to impose limitations on the design, since a reasonably
shaped shell is inherently stiff. Thus neither strength, stiffness, nor local stability would
seem to govern the design of the type of shell considered here. Two recent papers [3, 4] have
explored the application of plastic theory, originally developed for the design of steel
framed structures [5, 6], to masonry construction, and it was concluded that in many cases
overall stability was the prime criterion for structural design. This work will be developed
further here to deal with the problem of masonry domes.

LIMIT ANALYSIS OF MASONRY

It will be assumed that stresses are low enough for the crushing strength of the masonry
to be considered effectively infinite. Further, construction will be assumed to be dry, that is,
the weak tensile strength of mortar will be ignored. Thus the masonry can sustain any value
of compressive stress and zero tensile stress. It will be assumed further that sliding of one
stone on another does not occur.

Under these conditions, failure at a cross-section of a masonry member occurs by
hinging about a free edge of the masonry, and it has been shown [3] that the limit theorems
of plastic theory can be applied. The hinging action can perhaps best be illustrated by a
simple two-dimensional example of a voussoir arch, Fig. 5. As drawn, this segmental circular
arch fits exactly between the abutments. In fact, of course, practical imperfections will lead
to an inexact fit, and Fig. 6 illustrates the two cases of the abutments being slightly too wide
and slightly too narrow. To accommodate itself to the span, the arch has in either case
formed three hinges.

Note that, in conventional terms, the arch has three redundancies, and the formation
of three hinges has turned the redundant structure into one which is statically determinate.
Thus, in Fig. 6(a), the value of the horizontal thrust H, can be found simply by taking
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moments for the half arch. Such hinging (involving cracking of the masonry construction)
is completely harmless from the point of view of stability of the arch; a fourth hinge is
necessary before a mechanism of collapse can form, and it may be that the fourth hinge
can never occur for the given geometry and loading.
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Y Fi1G. 6. Cracked voussoir arches.

F1G. 5. Voussoir arch.

The thrust line for the arch must of course pass through a hinge point. Thus the thrust
lines for the two configurations of Fig. 6 will be somewhat as sketched in Fig. 7. (It remains
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Fi1G. 7. Limiting thrust lines.

to be shown that thrust lines can in fact be found to lie, as sketched in Fig. 7, within the
masonry; this problem is discussed further below.) It is clear from the sketched shapes in
Fig. 7 that the values of H, and H, must be markedly different; numerical calculations for
¢ = 30° in Fig 5, and for t/R = 0-05, lead to the values H, = 1-°27Wand H, = 2-91W,
where W is the weight of the half arch. In this case, therefore, which is analogous to that
of the dome of Fig. 4, the stress at the crown of the arch can differ by a factor of more than
2, depending on slight movements of the abutments. The fact that there exist such limiting
positions of the thrust line for arches was understood quite early; Coulomb, in his paper
of 1773 [7], states clearly that the thrust line can approach the extrados or intrados of an
arch, and Breymann (8] gives a detailed discussion of maximum and minimum values of
thrust.

The whole problem of the determination of the stability of masonry can, in fact, be
reduced to the formally simple question of whether or not a thrust line (thrust surface for
the three-dimensional structure) can be found lying wholly within the masonry. With the
assumption of zero tension in the masonry, it is inadmissible for the thrust line to lie
outside the stonework, but if any thrust line within the masonry can be found which is in
equilibrium with the externally applied loads, then the “‘safe” theorem of limit design
ensures that the structure will be stable. Thus cither Fig. 7 (a) or Fig. 7 (b) could be used as
complete proof that the arch, as sketched, will be stable. These thrust lines are not necessarily
those that would develop in practice, and the horizontal thrust H might assume any value
between the limiting values H, and H,, but there is no possible value of H within those
limits that could cause the arch to collapse.

Now it is well-known that a circular arch of the type sketched in Fig. S is of the ““wrong”
shape to carry its own uniformly distributed load ; the shape should be that of an inverted
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catenary. However, many catenaries can be contained within the real thickness of a circular
arch, and the two limiting cases are precisely those sketched in Fig. 7. Guided by this
observation, the problem of shell analysis, or of the two-dimensional analogue, arch
analysis, can be rephrased.

Membrane solutions are certainly required, in the sense that a thrust surface (or the
two-dimensional thrust line), is required. The membrane should not, however, be con-
strained to coincide with the centre surface of the original structure. Instead, the geometry
of the structure merely defines a region, possibly quite narrow, within which a membrane
solution must be established if the structure is to be stable.

THE VOUSSOIR ARCH

Still working with the two-dimensional arch as an analogue of the shell, the ideas can
perhaps be clarified by making some limiting calculations. Figure 8 shows a circular arch
of mean radius R embracing an angle 2¢, ; the thickness of the arch has been chosen so that
a line of thrust can only just be contained wholly within the masonry. Thus the thrust line
touches the crown of the arch at the extrados, and also passes through the extrados at the
springings ; at some angle § (to be determined) the thrust line touches the intrados.

F1G. 8. Voussoir arch of minimum thickness.

The centre line of the arch is sketched in Fig. 9, with the thrusts offset by a distance ¢/2;
if the weight per unit length of arch is k, the weights kf and k(p,— f) will act as shown.
Three equations of equilibrium may be written for each of the two portions of Fig. 9, and
the four unknowns H, X, Y and Z eliminated, leaving two equations connecting t/R, B,
and @, Thus for any value of the cut-off angle ¢, the value of t/R may be determined.
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Fi1G. 9. Elements of arch.

Figure 10 gives the resulting plot of the thickness ratio required for the arch just to be
stable. A full semicircular arch requires ¢/R to be just greater than 10 per cent, but a 5 per
cent arch can be used up to a cut-off angle ¢, of about 75°. (These brief calculations will
be used below in the discussion of certain aspects of the behavior of domes).
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F1G. 10. Required thickness of arch.

A physical interpretation may be given for this limiting position of the thrust line.
Where the thrust line touches the surface of the masonry an incipient hinge develops, and,
corresponding to the sketch of Fig. 8, hinges will form as shown in Fig. 11. These hinges
are sufficient in number to allow a collapse mechanism for the whole arch; indeed, only
four hinges (of the proper signs, i.e. opening and closing alternately when viewed from say
the intrados) are necessary for collapse, and the fifth is formed due to the symmetry of the
structure and the loading,

FiG. 11. Collapse mechanism for arch.

Thus, corresponding to the analytical problem of finding a thrust line lying wholly
within the masonry, there exists a physical problem of arranging a sequence of hinges to
form a collapse mechanism for the structure. The probiem of the collapse mechanism is
essentially one of geometry, and it may well be that the geometrical configuration of a
particular masonry element is such that there is no possible pattern of hinges that will
lead to a mechanism of collapse. This is true, for example, for a well designed flying buttress
[3], in which case a thrust line can always be found to lie within the masonry, and the
absolute statement can be made that only decay of the stonework will lead to collapse of
the buttress.

THE DOME

Parsons [9] gives the weight of the dome of Santa Maria del Fiore, spanning more than
140 ft, as 70,000,000 1b; this corresponds to about 2000 Ib/ft> of the dome surface. The
much thinner (about 2 ft 6 in.) main dome of Saint Sophia has a unit weight of an order of
magnitude less. These figures are to be compared with a unit wind pressure of typical
magnitude 20 Ib/ft2. Wind forces are therefore small or very small compared with the self-
weights of the structures considered here, and wind will be ignored in all of the following
calculations.
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The spherical membrane solution, equation (3), will first be examined ; under self-weight
alone, the two stress components are

pa
N, = ——
? 1+coso ®
N cos L
= —-_— a U ———
¢ P ?14coso

Considering first a full hemisphere, the value of the stress resultant N, which is always
compressive, increases from 1 pa at the crown (¢ = 0) to pa at the springing (¢ = 90°).
In contrast, the value of N,, which is compressive at the crown (of value § pa) changes
sign at ¢ = 51-8° (the solution of cos’¢p +cos ¢ = 1, i.e. cos ¢ = 3(,/5—1)). For ¢ > 51-8°,
tensile stresses are developed in the hoop direction, as sketched for the half dome in Fig. 12.

FiG. 12. Half dome.

Such tensile stresses are inadmissible for the material considered here, and, indeed,
for the general masonry structure: the presence of iron hoops and chains towards the
springing of existing domes testify to the concern that engineers have feit on this score.
(It is of interest that Poleni [10], in his discussion of the stability of the dome of St. Peter’s,
Rome, advocated the use of such tie rings, aithough he had come to the conclusion that
despite cracking, the dome would continue to stand without ties.) Thus the membrane
solution, given by equations (8), is inadmissible for the full hemispherical unreinforced
dome.

There is no difficulty, of course, for a spherical cap whose cut-off angle ¢, is less than
51-8°. Providing such an incomplete dome is supported at its base in the proper way, the
stresses will be purely compressive. The thickness of such a dome is then governed theoreti-
cally only by the need to prevent local instability, and any practical dome will have a
thickness dictated by constructional requirements. For the hemisphere, however, and in
general for the dome of cut-off angle ¢, greater than 51-8°, a certain thickness is required
to contain an all-compressive thrust surface, departing slightly from the hemisphere, but
still lying within the masonry.

Following Poleni, the dome may be cut into a series of “orange slices”, Fig. 13, and
the stability of each of these segments investigated separately; if it can be shown that
each element of the sliced structure is stable, then the safe theorem of limit design can
again be used to demonstrate that the original structure must be stable. The analytical
problem is very similar to that of the voussoir arch; now, however, the width of the arch
tapers to zero at the crown, so that the weight is not uniformly disturbed. A thrust line is
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FiG. 13. “Orange slice” of dome.

to be sought for the segment, lying within the masonry; as before, the limiting case will
be studied when a collapse mechanism is just formed, giving the minimum thickness of
dome.

In formal mathematical terms, the hoop stress N, of equations (1) is set equal to zero,
and r, is left for the moment undefined ; equations (1) then solve to give

prr, cos’@ = const. 9)

as the intrinsic equation for the thrust surface. The form of equation (9) is not particularly
convenient for the purpose of comparing with the spherical surface, and the techniques
used above for the voussoir arch and illustrated in Figs. 8 and 9 will be applied to the
segment of Fig. 13.

Although each segment is considered in isolation, the collapse mechanism corresponding
to the limiting position of the thrust line must be a possible mechanism for the dome
considered as a whole. Further, it must be demonstrated that the thrust line, while just
reaching the surface of the masonry at a number of discrete points, the hinges, elsewhere
lies always within the masonry. The correct limiting position of the thrust line for the
orange slice is sketched in Fig. 14; it touches the extrados of the dome at P and the intrados
at Q. Figure 15 shows the corresponding collapse mechanism, for which a central region
near the crown of the dome does not deform, but merely descends vertically; adjacent
segments will, of course, move apart between P and the base as the dome collapses, ex-
pressing the condition of zero tension in the masonry.

F1G. 15. Collapse mechanism for dome.
H
v

Fi1G. 14. Orange slice of minimum thickness.

Note in Fig. 14 that the thrust H acting on the segment at the crown must be provided
by an equal and opposite thrust on the diametrically opposite segment; the analysis
applies, therefore, only to a complete symmetrical dome, and not, for example, to the
half dome of Fig. 12.

In Fig. 14, the sections from the crown to P, from P to Q, and from Q to the springing,
may be considered exactly as in Fig. 9 for the arch; alternatively, a virtual work analysis
may be made. In either case, equations may be solved numerically for the required thickness
t/R in terms of the cut-off angle ¢, for the dome; Fig. 16 gives a plot of this thickness.
For the full hemisphere, ¢, = 90°, the required thickness is 420 per cent of the radius;



236 JACQUES HEYMAN

5|.5/

1 A 1 1 Ful | 1
o f oo 200 30° 4D° 500 60’ 70. wt %o
CUT-OFF ANGLE ¢,

FiG. 16. Required thickness of dome.

as @, is reduced, the required thickness drops, and becomes theoretically zero at ¢, = 51-8°.
(The angular co-ordinates, say f and ', of points P and Q in Fig. 14 are always related
by the expression

(I1-cosp)tanf’ = (1—cos f’)tan f8 (10)
The maximum of the expression (1 —cos ff)/tan f is given by
cos B = 3(/5—-1), ie f =518

Thus a full hemispherical dome, whose thickness is say 5 per cent of the radius, and
constructed of masonry incapable of supporting tension, will nevertheless stand without
reinforcement. Poleni’s conclusion about St. Peter’s is justified (Siegel [11] gives the span
of St. Peter’s dome as 40 m, and the shell thickness as 300 cm, a t/R ratio of 15 per cent;
the dome has, of course, two skins from the crown round to ¢ ~ 70° the individual ¢/R
ratios for the skins being about 6 and 8 per cent.) The unreinforced dome must, however,
be supported properly at the base ; Fig. 14 shows the inward thrust H that must be applied
as well as the vertical force W.

A good estimate of the value of H for the hemisphere may be made by considering
the overall equilibrium of the segment, redrawn in Fig. 17. The line of action of the weight
Wof the segment is as shown, from which H = (1 —n/4)W = 0-215W. Thus for a hemispher-
ical masonry dome spanning 100 ft and weighing say 5,000,000 Ib, there will arise a total
horizontal force H, uniformly distributed round the base, of value about 1,000,000 Ib, i.e.
some 3,000 1b per lineal foot. This force might be provided by a tie ring at the base; in
the absence of such a tie, proper abutments must be provided in the construction to absorb
this thrust. Two types of such abutments are found in St. Sophia, of which a brief discussion
is given below.

iy
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FiG. 17. Equilibrium of orange slice.

Before making further analyses, it is of interest to review in the light of conventional
limit design theory the work just completed on the dome. A thrust surface has been found,
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Fig. 14, in equilibrium with the applied loads (self-weight of the dome) and lying wholly
within the masonry; corresponding to this position of the thrust surface there exists a
mechanism of collapse, Fig. 15, and the calculations lead to a definite thickness of dome
for these conditions to hold. According to the basic theorems of limit design, the value
of the derived thickness is unique; further, a dome of greater thickness cannot collapse
under its own weight, and an unreinforced dome of lesser thickness cannot be built.

INCOMPLETE DOMES

The crown of a dome can, of course, be completely omitted (i.e. the dome can have an
“‘eye”’) without any apparent structural alteration being necessary. Similarly, a heavy
lantern (some 500 ton at Florence) may be loaded on to the crown. In either case, a simple
analysis can again be made by cutting the dome into orange slices, and constructing
thrust lines similar to that of Fig. 14.

Of more interest is the half dome, Fig. 12. The membrane equations admit only of the
symmetrical solution of equations (8) for the full hemisphere, and are valid for the half
dome only if the vertical edge is subjected to the compressive and tensile forces shown.
Thus no spherical membrane solution exists for the free-standing half dome. Nevertheless
it is intuitively clear that a half dome of sufficient thickness will stand, and a safe estimate
of this thickness may be made by again using the technique of slicing the dome into sections.

Suppose, for example, that the half dome is sliced into a series of parallel semicircular
arches, Fig. 18, each arch being independent of its neighbours. From Fig. 10 for the voussoir

Fi1G. 18. Sliced half dome.

arch, if each ring has a thickness /R of just over 10 per cent, then it will be stable. Similarly,
if the half dome has a cut-off angle of 75°, so that the sliced arches do not form full semi-
circles, then a 5 per cent dome will be stable. These thickness estimates are safe, since it
has been assumed that each arch ring acts independently; the interconnection in the real
structure ensures, by the safe theorem of limit design, that a thinner shell will actually
stand.

Indeed, the parallel ring slicing of Fig. 18 must destroy quite large interconnecting
forces between the rings, and hence lead to a stress solution which is quite far from the
actual stresses in the real dome; nevertheless, the parallel rings lead to a stress system
which is in equilibrium with the self-weight of the masonry, and hence which is admissible
for this form of analysis. In practice, the lack of support along the vertical free edge (c.f.
Fig. 12 showing the membrane forces) is bound to cause the dome to sag forward slightly
if there is any imperfect fit between the voussoirs. Mainstone [12] discusses such sagging
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in the half domes of St. Sophia (see below) and attributes the movement to the very slow-
drying beds of thick mortar between the bricks.

Thus a half dome, of sufficient thickness, will stand as a free structural element. It is
clear from Fig. 12, however that a half dome would form a good buttress, since the free
vertical edge can be subjected, at least round the top half, to large compressive forces.
As an apparently trivial example, consider a complete dome, shown in plan in Fig, 19, to
be first cut into two equal free-standing half domes, and then one of the half domes further
cut into orange slices. Each orange slice will be stable if, as mentioned above and shown

FiG. 19. Sliced full dome.

in Fig. 14, a propping force H is applied at the crown. Now these propping forces H summed
for all the slices will have an out-of-balance component acting on the other half dome.
By definition, the whole dome stands, and hence the half dome subjected to the out-of-
balance force (of magnitude 0-068 W, where W is the weight of the whole dome) will also
stand.

A half dome can therefore (if of sufficient thickness) either stand freely, or stand when
“leaned against” by an equal half dome. Now it can be proved, and is intuitively “obvious”,
that if a structure of the type considered here is subject to a set of static forces and a single
variable force, say P, and if the structure is stable under a value P, of the variable force
and also stable under a value P, of the variable force, then it will be stable under any value
P of the variable force lying between the limits P, and P,. Thus, since the half dome will
stand against zero iateral thrust at the crown (free standing) and against the full lateral
thrust of another half dome, it will also stand against any intermediate thrust.

As a structural curiosity, the three-quarter dome shown in plan in Fig. 20 will be con-
sidered. In this figure, the dome has been divided into a half dome and two “‘eighth”
domes, the eighth domes being in turn divided into orange slices. It will be seen that,

Fi1G. 20. Sliced three quarter dome.

comparing Fig. 20 with Fig. 19, one quarter of the complete dome has been removed;
the remaining orange slices in Fig. 20 will, of course, thrust against the half dome with
a force less than that exerted by another half dome. Thus, if the thickness of the masonry
is such that a half dome would stand freely, then a three-quarter dome will also stand.

The difficulties in the exact analysis of incomplete domes lie in their asymmetry.
A safe analysis requires the construction of a three-dimensional thrust surface lying
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within the masonry, and satisfying the loading boundary conditions; the geometry of
such a surface can be complex. It is for this reason that two-dimensional slices can lead
to much simpler solutions; although such solutions are safe, they may be so far from
reality as to give too conservative results. An alternative approach would be to write
the virtual work equation for assumed possible collapse mechanisms; besides leading to
unsafe solutions, this technique continues to have the disadvantage that the geometry of
deformation is difficult.

For the actual structures considered here, having t/R ratios of 5 per cent or more, the
safe technique of slicing is perfectly adequate; but the technique might be too “‘blunt”
to deal with other, thinner, shells.

ST. SOPHIA

As has been seen, a dome requires buttressing round its periphery, and several different
methods are possible. Choisy [13, 14] discusses the Byzantine solutions, of which the three
main combinations are shown in Fig. 21. In each of these figures, a circular dome is erected

)
1 (T a
. \

(@) ® ©
F1G. 21. Byzantine buttressing (after Choisy).

on a square plan, and the four faces of the square are buttressed by arches in (a), by half
domes in (b), and by arches on two faces and domes on two faces in (c). St. Sophia has this
mixed type of buttressing; Choisy’s horizontal section [13] at a level above the side aisles,
reproduced in Fig. 22, shows the two arches A and the two half domes C, these half domes
being themselves buttressed by much smaller half domes (exedrae). It will be seen that
massive (hollow) buttresses support the arches A ; Fig. 23 shows Choisy’s isometric drawing
[14]. This combination of arch and half dome buttresses gives a longitudinal emphasis to
the church, the completely open space (flanked by aisles) being 220 by 107 ft.

§
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F1G6. 22. Choisy’s plan of St. Sophia.
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F1G. 23. Choisy’s isometric of St. Sophia.

The span of the central dome is approximately 30 m, and the thickness 75 cm, so that
the nominal ratio ¢/R is about 5 per cent. The buttressing half domes have the same dimen-
sions, and the exedrae domes are about 37-5S cm thick. (These figures are from Mainstone
[12], based on the work of van Nice, of which some advance information has been published
[15, 16].) In fact the domes are far from being semi-circular in section, and are indeed fairly
flat; in addition, considerable thickening can be seen in Figs. 22 and 23 towards the peri-
pheries, which are in turn supported by rings of small individual external buttresses.

Thus the cut-off angle ¢, of the main dome and of the buttressing half domes of St.
Sophia is relatively small, and a nominal value of t/R of 5 per cent is completely adequate
to ensure the stability of the structure under normal conditions. Some doubt might be
felt about the capacity of the buttressing arches, which must carry not only part of the
vertical weight of the main dome, but also the lateral thrust of the dome. In fact, St. Sophia
could have been built with even narrower arches, being buttressed only by the half domes,
Fig. 24. Here the main dome has been sliced into parallel rings, exactly as in the study
of the half dome, Fig. 18, and it will be seen that an equilibrium solution can be constructed
involving lateral thrusts against the buttressing half domes only.

FiG. 24. St. Sophia with east and west buttresses only.

Such a modified structure would have had lowered resistance to earthquake conditions,
and the severe earthquakes of 986 and 1346 in fact demonstrated the capacity of the actual
buttressing arches to resist lateral thrust. The first of these earthquakes led to the collapse
of the western buttressing half dome together with one quarter of the main dome, the
remaining three quarters of the main dome standing. In this condition, the north and south
arches would have been subjected to considerable lateral thrust by the three quarter
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dome. The structure was repaired, and the second severe earthquake caused collapse of
the eastern buttressing half dome together with the corresponding quarter of the main
dome.
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Résumé—Les solutions ‘membrane’ sont sensibles aux petites déformations de la forme d’un coque, et ne peuvent
donc pas &tre utilisées pour 1’analyse du genre de coupole considerée ici. Les moyens d’appliquer les méthodes
plastiques A la construction en magonnerie [3, 4] sont élargies pour servir 4 I'analyse des coques; certaines
remarques concernant la structure de St. Sophie sont inclues.

Zusammenfassung—LJsungen fiir Membranschalen sind sehr empfindlich gegen Verformungen der Hiillenober-
fiiche, daher ungeeignet zur Untersuchung von Kuppeln. Friihere Untersuchungen [3,4] der Anwendung
plastischer Theorien bei Mauerwerkskonstruktion werden erweitert und zur Untersuchung von Hiillen angewen-
det. Einige Bemerkungen iiber die Konstruktion von St. Sophia werden gemacht.

AGcTpakT—Pewenns MeMOpaHEl YyBCTBUTENbHBI K MAJIEHBKUM AehOpMALIHsIM MOBEPXHOCTH 000JIOUKH, H,

KaK TAKOBble He rOOATCA AJiA aHANM3a THIA Kynona, ofcykmaemMoro 3aechk. PanHue wuiydyenus [3, 4]

MPHUMEHEHHS ITACTHYECKOM TEOPHHM K KAMEHHON KOHCTPYKLHMH, PacpOCTPaHAIOTCS Ha aHanu3 obGosiouex.
CpenaHo HeCKOJIbKO KPATKHX 3aMedaHuit 0 cTpyktype Cs. Codum.



